VF_divCVD_divCVE_divC
VCF_divCVCD_divCVCE_divC
VCF_divReCVCD_divReCVCE_divReC
VPF_divCVPD_divCVPE_divC
VPF_divReCVPD_divReCVPE_divReC
VI_divCVBI_divCVSI_divCVLI_divCVQI_divC 
VU_divCVUB_divCVUS_divCVUL_divCVUQ_divCVUI_divC
FunktionDurch eine Konstante dividieren
Syntax C/C++#include <VFmath.h>
void VF_divC( fVector Y, fVector X, ui size, float C );
void VCF_divC( cfVector Y, cfVector X, ui size, fComplex C );
void VCF_divReC( cfVector Y, cfVector X, ui size, float CRe );
C++ VecObj#include <OptiVec.h>
void vector<T>::divC( const vector<T>& X, const T& C );
void vector<complex<T>>::divC( const vector<complex<T>>& X, complex<T> C );
void vector<complex<T>>::divReC( const vector<complex<T>>& X, const T& CRe );
Pascal/Delphiuses VFmath;
procedure VF_divC( Y, X:fVector; size:UIntSize; C:Single );
procedure VCF_divC( Y, X:cfVector; size:UIntSize; C:fComplex );
procedure VCF_divReC( Y, X:cfVector; size:UIntSize; CRe:Single );
CUDA-Funktion C/C++#include <cudaVFmath.h>
int cudaVF_divC( fVector d_Y, fVector d_X, ui size, float C );
int cusdVF_divC( fVector d_Y, fVector d_X, ui size, float *d_C );
void VFcu_divC( fVector d_Y, fVector d_X, ui size, float C );
#include <cudaVCFmath.h>
int cudaVCF_divReC( cfVector d_Y, cfVector d_X, ui size, float CRe );
int cusdVCF_divReC( cfVector d_Y, cfVector d_X, ui size, float *d_CRe );
void VCFcu_divReC( cfVector h_Y, cfVector h_X, ui size, float CRe );
CUDA-Funktion Pascal/Delphiuses VFmath, VCFmath;
function cudaVF_divC( d_Y, d_X:fVector; size:UIntSize; C:Single ): IntBool;
function cusdVF_divC( d_Y, d_X:fVector; size:UIntSize; d_C:PSingle ): IntBool;
procedure VFcu_divC( h_Y, h_X:fVector; size:UIntSize; C:Single );
function cudaVCF_divReC( d_Y, d_X:cfVector; size:UIntSize; CRe:Single );
function cusdVCF_divReC( d_Y, d_X:cfVector; size:UIntSize; d_CRe:PSingle );
procedure VCFcu_divReC( h_Y, h_X:cfVector; size:UIntSize; CRe:Single );
BeschreibungYi = Xi / C
Die Ganzzahl-Versionen führen eine Integer-Division durch, d.h. ein eventueller Divisions-Rest wird verworfen. Um diesen zu erhalten, gebrauche man die Funktionen der VI_modC- Familie.
Die komplexen Fließkomma-Versionen existieren in zwei Varianten, einer für komplexe Konstanten C sowie einer für reelle CRe, durch die der komplexe Vektor dividiert wird.
Fehlerbehandlungkeine
Rückgabewertkeiner
QuerverweisVF_divV,   VF_addC,   VF_subC,   VF_mulC,   VF_divrC,   VF_modC,   VF_visC,   VF_redC

VectorLib Inhaltsverzeichnis  OptiVec Home